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PREFACE E .

-

Stability and Control is that branch of the aeronautical sciences
that is concerned with giving the pilot an aircraft with good handling
qualities. As aircraft have been designed to meet greater performance
specifications, new problems in Stability and Control have been en-
countered. The solving of these problems has advanced the science of
Stability and Control to the point it is today.

This handbook has been compiled by the instructors of the USAF Test
Pilot School for use in the Stability and Control portion of the School's
course. Most of the material in Volume I of this handbook has been ex-
tracted from several reference books and is oriented towards the test
pilot. The flight test techniques and data reduction methods in Volume
I1 have been developed at the Air Force Flight Test Center, Edwards Air
Force Base, California. This handbook is primarily intended to be used
as an academic text in our School, but if it can be helpful to anyone in
the conduct of Stability and Control testing, be our guest.

()74///// 4’/;?

OSE A. GUTHRIE, JR. 57
Colgyel, USAF
Commandant, USAF Test Pilot School
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CHAPTER

DIFFERENTIAL EQUATIONS

(REVISED MAY 1975)

list of abbreviations and symbols

Item Definition
X,Y,2 variables
t time in seconds
p differential operator with dimensions of (seconds)™!
j constant equal to V=T
¢,0 angular constant in radians
1
e constant equal to lim (1 + x)i = 2,71828, . . . .
x + 0
X oY o2y transient solution to differential equation
X ,Y .2 particular (steady state) solution to differential
PP P equation
X the dot notation irdicates differentiation with
respect to time, as in x = %%
: time constant in seconds
i i T, time to half amplitude in seconds
fl.% z damping ratio
é ; Wy undamped natural frequency in radians per second
; g ) wg damped frequency in radians per second
: ? s Laplace variable with dimensions of (seconcls)"l
? g L Laplace transfornr
r 3
€ 1 inverse Laplace transform
3 g X(s),¥(s),2(s) Laplace transform of x(t), y(t), =(t)
E % ‘; a symbol used for definitions, such as x & g% means x
é : is defined as g%
] 11
4
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@11 INTRODUCTION

The theory of difierential equations is a subject of considerable
scope, ranging from the rather simple and obvious through the abstract
and not so obvious. One can spcnd a lifeime studying the subject, and
a few people have, We have neither the time, nor perhaps the inclina-
tion for such devotions. Our purpose is to cover those aspects of the
theory of difrerential equations which are of direct application to
work at the school,

These notes deal with the tools and techniques required to analyze
differential equations, Such techniques are easily extended for use in
the study of aircraft dynamics. An aircraft in flight displays motions
similar to a mass-spring-damper system (figure 1.1). The static stability
of the airplane is similar to the spring, the moments of inertia similar
to the mass, and the airflow serves to damp the aircraft motion.

DAMPER

serinG 3 K

. — T
MASS _____?_D MASSH-!

2 DAMPER It:HD SPRING 2 C DAMPER Fjl Cua

%57;3%%WW / W )

Figure 1.1

k- This first section provides a review of basic differential equation
= theory. Succzeding sections deal with operator techniques, analysis of

first and second order systems, use of Laplace transforms, and solution
i of simultaneous equations.

3efore proceeding with our study, we shall define several terms
which will be used in these notes,

Differential Equation - An equation which involves a dependent variable
[or variables) together with one or more of its derivatives with respect
to an independent variable (or variables).

1.2
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Solution - Any function, free of derivatives, which satisfies a differen-
tial equation is said to be a solution of the differential equatiocn.

Ordinary Differential Equation - A differential equation which involves
derivatives with respect to a single independent variable is called an

ordinary differential equation.

Order - The nth derivative of a dependent variable is called a derivative
of order n, or an nth order derivative. The order of a differential equa-
tion is the ouder of the highest order derivative present.

——

Degree - The exponent of the highest order derivative is called the de-
gree of the differential equation,

2 Linear Differential Equation (ordinary, single dependent variable) - A
; differential equation i1n which the dependent variable and its derivatives
3 appear in no higher than the 1lst degree, and the coefficients are either
constants or functions of the independent variable, is called a linear

differential equation,

. Linear System - Any physical system that can be described by a linear
L B differential equation is called a linear system,

General Solutien - A solution of a differential equation of order n
which contains n arbitrary constants will be called a general solution

of the differential eguation,

.

g@S

B 1.2 REVIEW OF BASIC PRINCIPLES

E & Before investigating operator notation and Laplace transforms, let's
review the more basic methods of solving differential equations,

E | @121 DIRECT INTEGRATION

To solve a differential equation we seek a mathematical expression,
% relating the variables appearing in the differential equation, which
: qualifies as a solution under the definitions given above, A first
thought or inspiration may be: since we are presented with an equation
containing derivatives, a solution may be obtained by antidifferentiating
or integration. This process removes derivatives and prcvides arbitrary

constants.

s

,
i)
it

i
:
% 2 EXAMPLE

] % Given

; i dy

1 ¥ = +

g e A
rewriting

; ¥

o dy = (x + 4)dx

L

1.3
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integrating
dy = (x + 4)dAx + C
gives us
2

y=x2—+4x+C

EXAMPLE

Given

then

d(y"')
X

or d(y') = (x + 4)dx + C

1
then
y' = g% = ;i + 4x + Cl
integrating again
2
dy = (g_ tax+cp) dx+oc,

giving

(1.1)

oJ




Equations 1,1 and 1.2 qualify as general solutions under the defi-
nition stated earlier,

Life is full of disappointments and we would soon learn that this
direct application of the integration process would fail to work in many

cases,
EXAMPLE
» 2 dy
2xy + (x° + cos y) i 0 (1.3)
or
s
dy = ~2xy
X" + cos y
= -2xy
dy = dx + C (1.4)
X~ 4+ cos y
We cannot perform the integration of the term to the right of the
equal sign in equation 1.4. Egquation 1.3 can be solved, however, using
- straightforward techniques. (x2 + sin v = c is a general solution.,) We
%@f emphasize the word "technique" since the solution may rely upon novel
approaches, special groupings, or "judicious arrangements" and, perhaps,
witchcraft or conjuring, The former require extensive experience and
maturity within the discipline, and the latter talents are rarely endowed
by nature. We shall study a few special differential equations which are
easy to solve and have wide application in the analysis of physical prob-
lems,
@1.2.2 FIRST ORDER EQUATIONS
We shall consider briefly the first order ordinary differential
equation. Suppose we represent such an equation by
F(y', vy, x) =0
where
< d
¥t = a%
] B This is concise notation used by mathematicians to denote a digferential
B equation containing an independent variable x, a dependent varlablg Y,
;3 and the derivative of y with respect to x. The equation may contain the
§ derivative in differential form,
EXAMPLES

» = +
*. I% X Y

L kRl e
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3x dx + 4y dy = 0

1 = X =Y
y X+y

dy X -y cOos X
dx €in x + y

First order differential equations may be solved by
1. Separating variables and integrating directly.
2, PRecogunizing exact forms and integrating directly.

3. Finding an integrating factor (fudge factor) which will make the
equation exact.

4, Inspection, rearrangement of terms, etc., to use method 1 or 2, or
a combination of the two,.

These methods are thoroughly treated in all elementary differential
equations texts. A brief review of methods 1 and 2 is given below,

@1.2.2.1 SEPARATION OF VARIBLES
When a differential equation can be put in the form
fl(x)dx + fz(y)dy =0 (1.5)
where orie term contains functions of x and dx only, and the other func-
tions of y and dy only, the variables are said to be separated. A solu-

tion of equation 1,5 can then be obtained by direct integration

fl(x)dx + fz(y)dy =C (1.6)
where C is an arbitrary constant. Note, that for a differential equation
of the first order there is one arbitrary constant., In general, the num-
ber of arbitrary constants is equal to the order of the differential equa-
tion,

EXAMPLE
dy _ %2 + 3x + 4
dx y + 6
(y + 6) dy = (x2 + 3x + 4) dx

(y + 6)dy = (x° + 3x + 4)dx + C

3 2
+—-—§—--1-4X+C

ST

y2
-t ey =

W
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@1.2.22 EXACT DIFFERENTIAL EQUATION

Associated with each suitably differentiable function »of two vari-
ables f(x,y) there is an expression called its tot~l differential,

namely,

_ af of
df = 5= dx + 5= dy (1.7)

Conversely, if the differential equation
M(x,y)dx + N(x,y)dy = 0 (1.8)

has the property that

M(x,y) = %% and N(x,y) = %;

then it can be rewritten in the form

of SE o ao
de+3-y—dy-df—0

from which it follows that

f(x,y) = C

is a solution. Equations of this sort are said to be exact, since, as
they stand, their left members are exact differentials.

A differential equation
M(x,y) dx + N(x,y) dy = 0

is exact if and only if

M _ 5N
5y O (1.9)

If the differential equation
M(x,y) dx + N(x,y) dy = 0

is exact, then for all values of k,

X Y
J; M(x,y) dx fj; N(a,y) dy =k (1.10)

is a solution of the equation.

11
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EXAMPLE
Show that the equation

(2x + 3y - 2)dx + (3x - 4y + 1)dy = 0
is exact and find a general solution.
Applying the test, we find

oM _ 3(2x + 3y - 2)
oy oy

ON _ 3(3x - 4y + 1) _ 3
X IxX

Since the two partial derivatives are equal, the equation is exact,
Its solution can be found by means of equation 1,10.

X Y
_/a (2x + 3y - 2)dx +/; (3a - 4y + 1)dy = k

X 2 ¥
+ (3ay -2y° + y) = k
a b

b
(x" + 3xy - 2x)

(% + 3xy - 2x) - (a2 + 3ay - 2a) + (3ay - 2y2 + y) - (3ab - 2b% + b) =k

x2 +3xy -2x -2y> + y=k + a2 - 2a + 3ab - 2b% + b = K
©1.22.3 FIRST ORDER LINEAR DIFFERENTIAL EQUATIONS

We conclude the discussion of first order equations by considering
the followinc form

dy

3 T Rx) y=0 (1.11)

where R(X) may be a constant. To solve, merely separate variables,

gl+R(x) dx = 0

integrating
Jrg!= —JrR(x) dx + C'
where

C'=1nC

1.8
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Thus
"

In y = - R(x) dx + 1n C

or ;
- 'R(x) dx

-

y = Ce

If R is a constant, then

by -Rx

y = Ce (1,12)

We might conclude from this result that a first order differential

5 equation of form 1.11 with constant coefficients may be solved quite
simply. This is true and the solution will always have the form of
equation 1,12.

EXAMPLE

dy =
o t2w=0 (1.13)

then we have directly

e y = Cce 2. % (1.14)

which is the general solution. It is quickly recognized taat the solu-
tion is easily obtained by plugging the negative of the -oefficient of
y into the position indicated by the small square.

PROBLEMS: Set I, Nos. 1 and 2, page 1.76.

B13 LINEAR DIFFERENTIAL EQUATIONS AND OPERATOR TECHNIQUES

A form of the differential equation that is of particular interest

is
i n n-1
: Ady A .a y A, dv -
- v Riasw s SRR A (1.15)
o .
% If the coefficient expressions Ap, An-1, .+ . .  Ag are all functions of -
? x only, then equation 1.15 is called a linear differential equation. If
the coefficient expressions A, . . . , Ap are all constants, then 1.15

Y TR

is called a linear differential equation with constant coefficients,

T

g s

Sk
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+ 3 g% + Xy = sin x

is a linear differential equation,

EXAMPLE

dzy

X

is a linear differential equation with constant coefficients, Linear
differential equations with constant coefficients occur frequently in
the analysis of physical systems., Mathematicians and engineers have
developed simple and effective techniques to solve this type of eguation
by using either "classical” or operational methods, When attempting to
solve a linear differential equation of the form

n n-1
Andg+An_1d _Y+..'+Alg.¥_+Ay=f(x) (1.16)
dax dx X °
it is helpful to examine the equation
n n-1l
Ahd y a "y, dy = 0 (1.17)

nt Ao P S A ax A

dx

1.17 is the same as 1,16 with the right hand side zero. We shall refer
to 1.16 as the general equation and equation 1,17 as the complementary
or homogeneous equation, Solutions of egquation 1,17 possess a useful
property known as superposition, which may be briefly stated as follows:
Suppose yj (x) and y3(x) are distinct solutions of 1.17. Then any linear
combination of yj(x) and y,;(x) is also i solution of 1.17. A linear

combination would be Cj;y;(x) + Caya(x).

EXAMPLE
2
d’y _ dy 2

is a sclution, and that y,(x) = e?X

Using superposition,

It can be verified that y;(x) = e3x
is another solution which is distinct from y;(x).

then, y(x) = cle3x + c.,e2x is also a solution,
F S r4

1.10

W




R A i i e I - Sl Ty 4 R RG of ¥ 'F"'mﬁ"",‘;;{» A AN FUTITRATET v VNRLTTL RN

A AN i B o I e I o ML

Equation 1.16 may be interpreted as representing a physical system
where the left side of the equation describes the natural or designed
state of the system, and where the right side of the equation represents
the input or forcing function.

One might logically pursue the following line of reasoning in
attempting to find a solution to the problem described by equation 1.16,

1. A general solution of 1.16 must contain n arbitrary constants and
must satisfy the equation,

2, The following statements are justified by experience:

a, It is reasonably straightforward to find a solution to the com-
plementary equation 1.17, containing n arbitrary constants. Such a
solution will be called the transient solution. Physically, it
represents the response present in the system regardless of input.

b. There are varied techniques for finding a solution of the dif-
ferential equations due to this forcing function. Such solutions
do not, in general, contain arbitrary constants. This solution
will be called the particular or steady state solution,

3. If we take the transient solution which describes the response
already existing in the system, and then &add on the respcnse due
to the forcing function, it would appear that a solution so written
would blend the two responses and describe the total response of
the system represented by 1,16, In fact, the definition of a
general solution is satisfied under such an arrangement, This is
simply an extension of the principle of superposition. The transient
solution contains the correct number of arbitrary constants, and
the particular solution guarantees that the combined solutions
satisfy the general equation 1,16. Call the transient solution y¢
and the particular solution Yp- A general solution of 1,16 is then
given by

y = yt + yp ‘ (1.18)

Y
@1.3.1 TRANSIENT SOLUTION

Equation 1.13 is a complementary or homogeneous first order linear
differential equation with constant coefficients. We recognized a quick
and simple method of finding a solution to this equation, We also recog-
nized that the solution was always of exponential form, We might hope
that solutions of higher order equations of the same family would take
the same form.

ILet us examine a second order differential equation with constant
coefficients tou determine if

y = e™X (1.19)
is a solution of the equation

ay" + by' + cy = 0 (1.20)

111
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emx we have

Substituting y

or

(am2 + bm + c)e™ =0 ' (1.21)

Since e™ # 0

am2 + bm+ c=0 (1,22)
and
-b t.\/bz - 4ac
Ml 3 = Ta (1.23)

Substituting these values into our assumed solution we force it to become
a solution.

Ye = C,e + C,e 2 (1.24)

When working numerical problems it is not necessary to take the deriva-

tives of emx, if we remember that the dny/dxn is replaced by n', This
will be true for any order differential equation with constant coeffi-
cients,

We have included the subscript "t" on y to indicate that 1,24
represents the transient solution, From the foregoing it is seen . ¢
we have succeeded in extending the method for first order complemencary
equations to higher order complementary or homogeneous equations. Again
we note that we have traded off an integration problem for an algebra
problem (solving equation 1,22 for the m's}),

Differential or derivative operators can be defined and manipulatcu
to play the same role as m above,.

If we designate an operator p, p2, .+« ., p® as follows:
- n
d 2 d n d
p = y P = Sy XA O (1.25)
dx dx dxn
2 n
d 2 d d
ply) = a%, p(y) = —32’—, e e ., P y) = ——3\1 (1.26)
dx dx

L12
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then 1.20 may be written

ap?(y) + bp(y) + cy = 0 (1.27)

or, since the derivative operates linearly (each term in succession),

(ap2 +bp+ciy=0 (1.28)

and the operator expression (ap2 + bp + c) has the same algebraic
structure as 1.22, The operator expression in 1,28 is a polynomial
with precisely the same form as the polynomial on the left side of
1.22, hence it is often solved directly for the constants required in
the solution of 1,19. In this case, the transient solution 1.24 would
appear

Ve = cleplx + c2eP2x (1.29)

There are cases for which 1,24 and 1.29 are not entirely satisfactory
in providing a solution, but this will be discussed later, Th= m's or
p's may be real, imaginary, or complex numbers,

EXAMPLE
2
dy ., dy -
= + -2y =0
dx dx

Using operator notation,

(p? +p - 2)y =0

p2+p-2=0

P 11 -2

=-2x

X
y = c.e’ + cye

We shall now consider the various cases for solutions of the com-
plementary (homogeneous) eguation,

Consider the equation

dzy dy
a 5;2 +b g tey=0 (1.30)

We have seen above that the solution of this differential egquation is
equivalent to solving the characteristic equation

ap? + bp + c = 0 (1.31)

113
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The general solution of 1.30 is of the form
e + c.e (1.32)

where c; and c, are arbitrary constants, and p); and p; are solutions of

the characteristic equation 1,31. Recall from algebra that a characteris-
tic equation can yield complex roots, imaginary roots, or real roots, 4

that is, p = [-b + b2 - 4 acl]/2a). We will consider the solution
1,2 C

1.32 for various values of the constants in equation 1,31 and consider
changes in the form of the solution which may be desirable or necessary.

@1.2.1.1 CASE 1: ROOTS REAL AND UNEQUAL

If p; and pp are real and unequal the desired form of soluticn is
just as is

EXAMPLE
2
da’y dy _ -
a_2.+ 4 = 12y = 0
X

(P2 + 4p - 12)y = 0 (in operator form)
solving

p + 4p - 12 = 0

gives
-4 + /Ie + 48
S 2
-4 + 8 -
or
p=-6, 2 *
; and
1 y = cle_6x + c2e2x

is the required solution,

1.14
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@1.3.1.2 CASE 2 ROOTS REAL AND EQUAL

If Py and p, are real and equal we run into trouble.

EXAMPLE
2
a7y _ 4, dy =
oz ot

(p2 - 4p + 4)y = 0 (in cnerator form)

solving,

4+ 6T,
p = 5 =2.=2

or p = 2, But this gives only one value of p., If we try to use 1,32

all we get is y = cle2x but we need two arbitrary constants to have a
transient solution like 1.30. If we are really alert, we may notice

that the ogerator expression (p2 - 4p + 4) can be written (p =2) (p - 2),
or (p - 2)%, vhich is a polynomial expression with a repeated factor.
(that is, p = 2; 2 is the solution,) We can then write y = cle2x + c2e2x
as the transient solution, This is really no better than our first

attempt, y = clezx, since cj and cy can be combined into a single arbi-
trary constant,

. . 2x _ 2x
Yy = c.e"" + c,e = (cl + c2)e = c,e

To solve this problem, simply multiply one of the arbitrary constants

by x, Now write: y = cle2x + czxezx. We can no longer "lump" the two

coefficients of e2x together. The solution now contains two arbitrary

constants, and it is easily verified that

is a transient solution of the problem above,

@1 3.1.3 CASE 3: ROOTS PURELY IMAGINARY

EXAMPLE
d2y

+y=20
ax?

in operator form

(p?2 + 1)y = 0

115




Solving,

0+ /-4

B= —o——= /%

In most engineering work we refer to v=I as j. (In mathematical texts
it is denoted by i.). Now, pe

p=+3
and the solution is written

’ Y = cleJx + cze"Jx (1.33)

This is a perfectly good solution from a mat,rmatical standpoint, but
it is unwieldy and unsuggestive to engineers. A mathematician by the
rame of Euler worked out this puzzle for us by developing an equation
called Euler's identity.

el® = cos x + j sin x (1.34)

This equation can be restated in many ways geometrically and analyti- 4
cally, and can be verified by adding the series expansion of cos x to
the series expansion of j sin x., Now 1,33 may be expressed

Yo = ¢ (cos x + j sin x) + c, [cos (-x) + j sin (-X)]

(c, + cz) cos x + j (c1 - cz) sin x (1.35)

1

or

Y, = C5 COs x + ¢, sin x (1.36)

Equation 1,36 has another interesting form, lLet

= c3 c4
¢ [ 2 2 [ 2 2
c3 - c4 c3 * C4

‘ (1.37)

cos X + sin x

Now consider a right triangle with sides labeled as follows:

Riad ey

1.16
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Figure 1.2
Now,
c
3 = sin ¢
2 2
C3 + c4
c
4 = cos @
2 2
C3 + C4
and
2 2 _
c3 + c4 = A,

a and ¢ are arbitrary constants, and 1.37 becomes
Yo = A {(sin ¢ cos x + ccs ¢ sin x)

Y = A sin (x + ¢) {1.38)

To summarize, if the roots of the opeictor polynomial are purely imagi-
nary, they will be numerically equal but opposite in sign, and the solu-

+tion will have the form 1.36 or 1,38.
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©1.3.1.4 CASF 4 ROOTS COMPLEX

&
i EXAMPLE

e dzy dy

"»'\w —-2— + 2 a?{- + Zv = 0
£ dx

§

3 i in operator form,

2 E

(p2 + 2p + 2)y = 0
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Solving,

-2 + YT =§

or

D=1l #§, -1~

and

Yo 1= cle(_1 3 g e EL =T {1,39)

Equation 1.39 may be written

= o~ X ix -jx
Yo = € ce”” + cye
or, using the resil.~ 1.36 and 1.38,

_ =X .

y, = e cy cos X + ¢, sin x (1.40)
or

Ye = e™ A sin (x + ¢) (1.41)

Note, also, that 1.38 could be written in the form

yt=Acos (x + 6), where 86 = ¢ - 90°

PROBLEMS: Set I, No, 3, page 1.76; Set 1I, a only, page 1.85.

@1.3.2 PARTICULAR SOLUTION

The particular solution, for our work here, will be obtained by
the method of undetermined coefficients, (There are other methods
which may be used.) This method consists of assuming a solution of the
same general form as the input (forcing function), but with undetermined
coefficients, Substition of this assumed solution into the differential
equation then enables us to evaluate these coefficients, The method of
undetermined coefficients applies when the forcing function or input is
a polynomial, terms of the form sin ax, cos ax, eaX, or combinations of
sums and products of these, The complet{c .olution of the linear differen-
tial equation with constant coefficients is then given by 1.18 (that is,

the solution tc the complementary equation (transient solution), plus
the particular solution),
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A few remarks are appropriate regarding the second order linear
differential equation with constant coefficients, Although the eguation
is interesting in its own right, it is of particular value to us because
it is a mathematical model for several problems of physical interest.

2
a éxf + b'%% + cy = F(x) (mathematical model)
dax
a? d
m ——§-+ B H% + Kx = F(t) (describes a mass spring (1.42)
at d mper system)
a0, ~ap . 0 .
L —+ R It + = E(t) (describes a series LRC
at electrical circuit)

Equation 1.42 are all the same mathematically, but are expressed in dif-
ferent notation. Different notations or symbols are esmployed to emphasize
the physical parameters involved, or to force the solution to appear in a
form that is easy to interpret. 1In fact, the similarity of these last

two equations may suggest how one might design an electrical circuit to
simulate the operation of a mechanical system,

Consider the equation

dzy dy
a (—1;2- + b a—i + cYy = f(x) (1.43)

Wwe now must solve for the special solution (particular solution) which
results from a given input, f£(x). This particular solution can be found
by using various techniques, but we will consider only one, the method
of undetermined coefficients, This method consists of assuming a solu-
tion form with unspecified constants (undetermined coefficients), and
solving for the values of the constants which will satisfy the given
differential equation. The method is be.:t described by considering
examples.

@1.3.2.1 FORCING FUNCTION = A CONSTANT

%y + 4 43y -5 (1.49)
al @ '

The input is a constant (trivial polynomial), so we assume a solutioa
)
of form yp = K, Obviously, d"K/dx2 = 0, and dK/dx = 0.

Substituting,

0 + 4(0) + 3K = 6
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Therefore, y,, = 2 is a particular solution, We note that we can solve
the equation
d2 dy
(_i_g. +4zE+3y=0
X
in cperator form ,
(p2 + 4p + 3)y = 0
or
p= -1, -3 »
and the transient solution is
- -X -3x
Yo = Cq@ + cye
The general solution of 1.44 may be written
-l -X -3x
y = c,e + c,e + 2
~ s 4 ~s
e
transient particular
solution (or steady state)
solution
@1.3.2.2 FORCING FUNCTION = A POLYNOMIAL f
EXAMPLE ;
dzy dy 2
—5 + 4 + 3y = x© + 2x (1.45)
dx dx
-
Now the form of f(x) for 1.45 is a polynomial of second degree, so we
4 assume a particular solution for y of second degree (that is, let yp =
sz + B8x + C).
? Then *
K
£ dy
L |-
and
3 dzy
! —E = 2a
gr dx

b e G SR




Substituting into 1.45,

(2) + 4 (2Ax + B) + 3 (AX® + Bx + C) = x% + 2x
or

(38) x2 + (BA + 3B) x + (2A + 4B + 3C) = x% + 2x
Equating like powers of x,

x2: 3A =

[

A=1/3

X: BA + 3B = 2

3B =2 - g
B = -2/9

x°: 2A + 4B + 3C =0
3¢ = 8/9 - 2/3
c = 2/27

Therefore,

v, = 1/3 2 - 2/9 x + 227

The general solution of 1.45 is given by

2

y =cpe ™+ e 3% L 173 %% - 2/9 x + 2727

€2

since the traisient solution is the same as for 1.44, As a general rule,
if tha forcing function is a polynomial of degree n, assume a polynomial
solution of degree n.

©@1.3.2.3 FORCING FUNCTION = AN EXPONENTIAL

; EXAMPLE

2 2

E d’y dy _ 2%

B —5 + 4 ot 3y = e (1.46)
1 g, dx

i ' The forcing function is e2¥ 5o we assume a solution of the form

¢ y = Ae2x

AR W Y
3
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I (Aezx) = 2Ae2x

2
9_7 (Aae?¥) = 4pe?X :
ax

sk

Substituting in 1.46, ’

2x 2x H

4ne?* 4+ 4(20e2%) + 3(2e?®) = e

e2x 2x 3

(4A + 8A + 3A) = e

The coefficients on both sides of the equation must be the same, There-
fore, 4A + 8A + 3A =1, or 15A =1, and A = 1/15, The particular solu-

tion of 1.46 then is ¥y = 1/15 ezx. The transient solution is still the
same as for 1.44. A final example will illustrate a pitfall sometimes
encountered using this method.

@1.3.2.4 FORCING FUNCTION = AN EXPONENTIAL (SPECIAL CASE)

EXAMPLE e
dzy dy -X i
—5 + 4 Ix + 3y = e (1.47) 1
dax
The forcing function is e ¥, so we assume a solution of the form y = Re™%, {
Then
d X, _ -X
= (Re 7)) = -Re .
and
2
9‘7 (ae”*) = ae”¥ P
dx
Substituting
ae X + 4(-2e™®) + 3(ne”X) = 7%
(A - 4A + 3n)e ¥ = 7%
(0)e™* = 7%
122
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Obviously, this is an incorrect statement., To find where we made our

mistake, let's review our procedures.
To solve an equation of the form

(p+a) (p+by=e2¥

we solve the homogeneous equation to get
(p+a) (p+by=20

p==-a, -b

If we assume Yy = P
then
y=y +y =ce s cePXine=(c, + e 4 ¢ ¥
t P 1l 2 1l 2
_ -ax =bx
= cje + c,e

However, we have already seen that y{ is the solution only when the
right side c{ the equation is zero, and will not solve the equation
when we have a forcing function. Therefore, we assume a particular

solution,

= Axe 23X
Yp

then

_ _ -ax -bx - -
y = yp + yt = cle + c2e + Axe

Similarly, we could have the equation
(p + aj) (p - aj) y = sin ax
with transient solution
Yy = ¢ sin ax + c, cOs ax
If we assume yp = A sin ax + B cos ax

then
= = 3 B
Y Yt +y (cl + A) sin ax + (02 + B) cos ax

ax _ -a
(c; + Ax)e + cye Y,

123
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+ (c2 + B) cos ax

= ¢, sin ax + c, cos ax

[}
<
ct

3

Therefore, we assume
yp = Ax sin ax + Bx cos ax

and

y = (cl + Ax) sin ax + (c2 + Bx) cos ax # Ye

Note the following, however, with the equation

(p+a-3jb) (p+a+ jb)y = sin bx

_ _-ax .
Y, =e (c; sin bx + c, cos bx)

we can assume yp = B sin bx + C cos bx

then

a \ -ax .
Y = cye aX gin bx + cye cos bx + B sin bx + C cos bx

a

y = (cle"ax + B) sin bx + (cye” ¥ 4+ C) cos bx # '

Similarly, if

(p+a-73b) (p+a+ jhy = e 2%

we could assume
-ax
= Ae
YP

In our example above, equation 1,47, a valid solution can be found

by assuming ¥, = Axe™®, then

g§ (Axe ™) = A(-xe¥ + %)
and

d2 -X -X -X

= (Axe 7)) = A(xe © - 2e ")

124
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Substituting

X X X

Axe™® = 2e™*) + 4a(xeF + ™) + 3(axe*) = e

(A - 4A + 3A)xe X + (=2A + 4A)e X = 7%

(0)xe™® + 28e™X = 7%

and
A=1/2
Thus,

i = (1/2) xe ¥

is a particular solution of 1.47, and the general solution is given by:

y = cle'x + c2e_3x + 172 xe¥

The key to successful application of the method of undetermined coeffi-
cients is to assume the proper form for a trial particular solution.

Table 1 summarizes the results of this discussion.

PROBLEMS: Set II, 1-5, b only, page 1.85.
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Table I

2
Differential equation: 5 d % +b %% +cy = £(x)
dx

f(x)* Assume yp**
1. B8 A
Bt n n-1
2. (n a positive integer) on + Alx T E o An_lx + An
Berx
3. (r either real or complex) Ae™¥
4, B cos kx

A cos kx + B sin kx,

5. B8 sin kx

n
' m S sE
(on An-l

n
* . .. #
(Box Bn-l

s
x + An)e ® cos kx +

n rx
6. Bxe cos kx

X

rx x + Bn) e™® sin kx

7. ane sin kx

*When f(x) consists of a sum of several terms, the appropriate
choice for y, is the sum of Yp expressions corresponding to
these terms individually,

**Whenever a term in any of the y,'s listed in this column dupli-
cates a term already in the complementary function, sll terms
in that y, must be multiplied by the lowest positive integral
power of x sufficient to eliminate the duplication,

@1.3.3 SOLVING FOR CONSTANTS OF INTEGRATION

As discussed paragraph 1,2, the number of arbitrary constants in
the solution of our linear differential equation is equal to the order
of the equation. These constants of integration may be determined by
initial or boundary conditions, That is, we must know the physical
state (position, velocity, etc.) of the system at some time in order to
evaluate these constants., Many times these conditions are given at
t = 0 (initial conditions), which is frequently called a quiescent system,

It should be emphasized at this point, that the arbitrary constants

of the solution are evaluated from the complete solution (transient plus
steady state) of the equation.

1,26
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We shall illustrate this method with an example.

EXAMPLE

X+ 4x + 13x = 3 (1.48)

where the dot notation indicates derivatives with respect to time (that

is, x = dx/dt, X = d‘x/dtz. We will assume that the boundary conditions

* are x(0) = 5, and x(0) =8, The transient solution is given by

p2 + 4p + 13 =0
p=-2+% VI =13 = =2 + 33

X, = e"2t (A cos 3t + B sin 3t)

t
We assume

x =D

p
dx

s X ™ ol= 0

) e
X =0

P

Substituting into 1.48, we get D = 3/13

for a complete solution

x(t) = e 2t (A cos 3t + B sin 3t) + 3/13

To solve for A and B, we will use the initial conditions specified above.
x(0) =5 =24+ 3/13

or
P A = F2/13

Differentiating the complete solution, we get

P %(t) = e 2 (3B cos 3t - 3A sin 3t; -2¢72% (A cos 3t + B sin 3t)
§ Substituting the seccnd initial condition
E . %(0) = 6 = 3B - 2A
¥ y

E & L £ 76

1.21
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Therefore, the complete solution to 1.48 with the given initial conditions
is

x(t) = e™2% [(62/13) cos 3t + (76/13) sin 3t] + 3/13

We have discussed the first and second order differential equation
in some detail, It is of great importance to note that many higher order
systems quite naturally decompose intc first and second order systems.
For example, the study of a third order equation (or system) may be con-
ducted by examining a first and a second order system, a fourth order
system analyzed by examining two second order systems, etc, All these
cases are handled by solving the characteristic equation to get a tran-
sient solution and then obtaining the particular solution by any con-

; venient method.

PROBLEMS: Set II, Nos. 1-5, c only, page 1.85,

@14 APPLICATIONS

Up to this point, we have considered differential equations in
general and linear differential equations with constant coefficients
in greater detail. We have developed methods for solving first and
second order equations of the following type:

5 g_’t‘ + bx = £1t) | (1.49)
2
d x ax (1.50)

a + b 7+ cx = f£(t)
at? Ot

These two equations are mathematical models or forms. These same forms
may be used to describe diverse physical systems. In this section we
shall concentrate on the transient response of the systems under investi-
gaticn, since this area is of primary interest in future studies.

@1.4.1 FIRST ORDER EQUATION

Consider the following example:

EXAMPLE
' A% + x = 3 (1.51)
where
}-{ a5 dx
dt

Physically, we can let x represent distance or displacerent, and t
represent time. To solve this equation, we find the transient solution

by using the homogeneous equation

1.28
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ap

Ay

4p +1 =0

p = -1/4
Thus

X, = ce“t/4

X = A
P
dx
Bz
dt
Substituting
A =3
or
X =3
p ‘

(1.52)

The first term on the right of 1.52 represents the transient response
of the physical system described by equation 1.51, and the second term
represents the steady state response if the transient decays. A term
useful in describing the physical effect of a negative exponential term
is time constant which is denoted by <. We shall define 1 as

e
1
e i

Thus, equation 1,52 could be rewritten as

A .53

wiere 1 = 4,

Note the following points:

If p is positive,

1. We only discuss time constants if p is negative.
solution will not

the exponent of e is positive., and the transient
decay.

ll29
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2., If p is negative, 1 is positive,

s 3. 1 is the negative reciprocal of p, so that small numerical values
: of p give large numerical values of 1 (and vice versa).

4. The value of 7t is the time, in seconds, required for the displace-
¥ men’. to decay to 1l/e of its original displacement from equilibrium
4 or isteady value, To get a bettei understanding of this statement,

let"s look at 1.53.

L 4
%= e At 3
3 and let t = 1, Then
. J 3
g x=zcels3=cl+3
3 e
;j Thus, when t = 1, the exponential portion of the solution has decayed to
3 1/e of its original displacemen: (figure 1.3).
i ;
‘S X
-
> | ]

Figure 1.3

Other measures of time are sometimes use ) - .l the decay of the
exponential of a solution. If we let T; denote ... ctime it takes for
the transient to decay to one-half it's original amplitude, then

T, = 0.693 1 (1.54)

This relationship can be easily shown by investigating

sl B ot s (1.55)
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From our definition, 1 = /¢, We are looking for T;, the value of t at
which x¢ = 1/2 x(0). Solv.ag

_ -at
xt = Cle
1/2 x,(0) = 1/2 ¢, = ¢c,e ~3T1
Le 3= e
- e™3T] = 1,2
in 1/2 = aT1
-ln 1/2 _ .693
« = = = -
T, . 23 = 693

Let's complete our solution of 1.51 by specifying a boundary condi-
tion and evaluating the arbitrary constant. ILet x =0 at t = 0,

t/4

x = ce + 3

c = =3
i:> Our complete solution for this boundary condition is
x = -3¢ t4 4 3
See figure 1.4,
X
11
3 —————————————
2 =g
s x(t)= -30-'/‘+ 3
s I
| |
I
14 ' |
¥ I
4 (I
1 (I
|| -
o 3 T‘ T
5 Figwe 1.4

1.3



@1.4.2 SECOND ORDER EQUATION
Consider an equation of the form 1,50, The characteristic equation
(operator equation) can be written:

a p2 +bp+tc=0 (1.56)

The roots of this quadratic equation determine the form of the transient
solution as we have seen in paragraph 1.3. We will now discuss physical
implications of the algebraic property of the roots,

©® 1.4.2.1 ROOTS REAL AND UWEQUAL

When the roots are real and unequal, the transient solution has
the form

x, = cleplt + c.ePat (1.57)

1.4.21.1 Case 1

When p; and pp are both negative, the system decays and there will
be a time constant associated with each exponential (figure 1.5).

p

nt et

x'zc]e +c2e
P] <o
PR <o

A\ P!

\ \ 4 c2e
\
N\
—
Figure 1.5
1.421.2 Case 2

when p1 or pp (or both) is positive, the system will generally
diverge (figures 1.6 and 1.7).

1.32
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- Pt
- \\/‘I' "'"fxﬁlo]
5 e i | > t

Figwe 1.6 Figure 1,7

1.4.21.3 Case 3

Examples where p; or pp (or both) are zero, are usually not observed
in practical cases,

® 1.4.2.2 ROOTS REAL AND EQUAL

When p; = p2, the transient solution has the form

X, = clept + cztept (1.58)

1.4.2.2.1 Case 1

When p is negative, the system will usually decay (figure 1.8).
(If p is very small, the system may initially exhibit divergence.)

pt
Xy = c-le +c21e

 /

F Figure 1.8

1.33
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14.2.2.2 Cose 2

When p is positive, the system will diverge.

® 1,423 ROOTS FURELY IMAGINERY

When p = + jk, the transient solution has the form

X, = ¢, sin kt + ¢, cos kt (1.59)
or °
X, = A sin (kxt + ¢) (1.60)
or
2
X, = A cos (kt + o) (1.61)

The system executes oscillations of constant amplitude with a frequency
kx (figure 1.9),

[y
x =Asin(|(t+ )
| ' ¢
L
hY t
—A <+
Figure 1.9
® 1424 ROOTS COMPLEX CONJUGATES
*
When the roots are given by p = k; + jk,, the form of the transient
solution 1is
X, = eklt (c, cos k.t + ¢, sin k,t) (1.62)
t 1 2 2 2 2 .
or
) .
Xy = A e 1 sin (kzt + ¢) (1.63)
or
x, = A e¥1% cos (kyt + o) , (1.64)

The system executes periodic oscillations contained in an envelope

given by x = + A eklt

1.34




1.424.1 Cose |
When k; is negative, the system decays (figure 1,10).

1.4.2.4.2 Case 2

When kj is positive, the system diverges (figure 1.11),

X X
[ Vd
A — A
N 5 r s
Vi : 7
\\/_\;(,-Ao ";in(kzn¢) -\”.—-
h<
~~ S 1 ° A—-
= —
/-\x. 1 - 1
-
—
A — xr=Ae" sm(kzud»
~ rd K- |l'| >0
A !
/ ke -
7 ~N
-A_k N
Figure 1.10 Figure J.11

The discussion of transient solutions above reveals only part of the
picture presented by equation 1.53. We still have the input for forcing
function to consider, that is, f(t). 1In practice, a linear system that
possesses a divergence (without input) may be changed to a damped system
by carefully selecting or controlling the input. Conversely, a nondi-
vergent linear system with weak damping may be made divergent by certain
types of inputs,

@ 1.4.3 SECOND ORDER LINEAR SYSTEMS

Consider the physical model shown in figure 1.12, The system con-
sists of an object suspended by a spring, with a spring constant of k.
The mass may move vertically and is subject to gravity, input, and damp-
ing, with the total viscous damping constant equal to c.

1.35

il LR el el o




B o P

DAMPER SPRING

DAMPER
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N6

2
Ib /4 per sec

MASS i ‘
ft /sec?
DISPLACEMENT
X
ft
FORCE,Ib
F
Figure 1.12

The equation for this vibrating system is given by

mx + cx + kx = f(t) (1.65)
The characteristic equation is given by

mpz cp +k =0 (1.66)

and the roots of this equation are

P12 mt & =

(1.67)

]

]
3
| +

5

G

7
[]
H

let us, for simplicity, and for reasons that will be obvious later
define three constants

C
27K

(==

(1.68;

the term ¢ is called the damping ratio, and is a value which indicates
the gamping strength in the system,

e (1.69)
m

1,36
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wn is the undamped natural frequency of the system., This is the frequency
at which the system would oscillate if there were no damping present,

A
= o V1 -2 (1.70)

wg is the damped frequency of the system, It is the frequency at which
the system oscillates when a damping ratio of ¢ is present.

Substituting zand w, into 1.67 now gives

t jwn ul ] c (1-71)

P1,2% "% %

With these roots, the transient solution becomes

. p,t p,t
X, cle 1+ cze 2
= e'r’“’nt [c1 cos w, Vl - cit + ¢y sin 0y Vl - cz t] (1.72)
or
]
x, = A e~*“nt sin fo Vi - (%, ¢’ (1.73)
{

Note that the solution will lie within an exponentially decreasing en-
velope which has a time constant of 1/(z w,). This damped oscillation

ie shown in figure 1.13.

TR
(;;::
\
\
\

-t

A
Yy

Figure 1.13
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If we divide equation 1,65 by m we obtain

k f(t)

T+t =% F =k ® ==L
m m

310

or, rewriting using wp and ¢ defined by 1.68 and 1,69

i B . 2 _ f(t)
x+2¢,wnx+mnx-—r-n-— (1.74)

Equation 1.74 is a form of 1.65 that is most useful in analyzing the
behavior of any linear system.

A general second order physical system can be compared with mass-
spring-damper system. The equation defining the system was

mx+cx+kx= £(t) (1.65)

where we defined the parameters

w, = 4/% , undamped natural frequency

C

, damping ratio

(A
Ll

2

From equation 1,71 we see that the numerical value of ¢ is a powerful
factor in determining the type of response exhibited by the system.

PROBLEMS: Set II, 1-5, 4 only, page 1.86.
Let us now consider the physical problem and analyze the various
conditions possible, The magnitude and sign of ¢, the damping ratio,

determine the response properties of the system,

Therz are five distinct cases which are given names descriptive of
the response associated with each case.

[
fal
1

= 0, undamped
2, 0 <7 <1, underdamped

1, critically damped

w
ol
It

4, 7 > 1, overdamped

5. ¢ < 0, unstable

We shall now examine each case, making use of equation 1,71

e
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@ 1431 CASE 1: [ = 0, UNDAMPED

For this condition, the roots of the characteristic equation are

Py,2 =% Juy (1.75)

giving a transient solution of the form

3 Xt C.l

cr

cos wnt + ¢, sin wnt (1.76)

X

A sin (w t + ¢) (1.77)
showing the system to have the transient response of an undamped
sinusoidal oscillation with frequency wp. (Hence, the designation of
wn as the "undamped natural frequency.") Figure 1.9 shows an undamped
system,

Figure 1.14 illustrates typical response for differing values of
damping ratios between zero and one,

: L /{\\ L 1.8
O (UYL NWIVYTT iR
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@ 1.4.3.2 CASE 22 0< <1, UNDERDAMPED

For this case, p is given by equation 1,71 and the transient solu-
tion has the form

x, = Ae “n%sin (u_4/1 - 2t o+ 9) (1.78)

This solution shows that the system oscillates at the damped frequency,
wg, and is bounded by an exponentially decreasing envelope with tine
constant 1/(z wp). Figure 1,14 shows the effect of increasing the damp-
ing ratio from 0,1 to 1,0,

@ 1.4.33 CASE 3: =1, CRITICALLY DAMPED

For this condition, the roots of the characteristic equation are

pl,2 = - (1.79)
which gives a transient solution of the form
x, = cle—wnt + czte_wnt (1.80)

This is called the critically damped case and generally will not over-
shoot, It should be noted, however, that large initial values of X can
cause one overshoot. Figure 1.14 above shows a response when 7 =1,

@1.434 CASE 4 ¢ >, OVERDAMPED

In this case, the characteristic roots are

tw Lt -1 (1.81)

P2 5 3 5 n

n
which shows that both roots are real and negative, This tells us that

the system will have a transient which has an exponential decay without
sinusoidal motion. The transient response is given by

s {c— (Ez—l)]t = lic+ﬂ/(c2—l)j|t
xt=ce n + c,e n

! 2 (1.82)
This response can also be written as
= -t/ -t/
X, = c,e 1+ c e 2 (1.83)

where I and 1, are time constants for each exponential term.
This solution is the sum of two decreasing exponentials, one with

time constant -] and the other with time constant 12, The smaller the
value of 1, the quicker the transient decays. Usually the larger the

1.40




value of ¢, the larger 1) is compared to 1. For the case 7 > 1, 12 is
small in comparison to 1] and can be neglected. The system then behaves
like a first order system (that is, the effect of mass can be neglected).
hWis can be seen most readily from equation 1,83, Figure 1.5 shows an
overdamped system,

@ 1.4.3.5 CASE 5: =1< 7¢O, UNSTABLE

For this case, the roots of the characteristic equation are
= - 7 w_ + jw 1l - C“ (1.84)

These roots are the same as for the underdamped case, except that the
exponentia: term in the transient solution shows an exponential increase
with time,

- a—bw t o _ 2 . _ 2
X, e n [“l cos w, 1l "t + c, sin w ‘/1 t“ t]1 (1.85)

Whenever a term appearing in the transient solution grows with time
(and especially an exponential growth), the system is generally unstable,
This means that whenever the system is disturbed from equilibrium, the
disturbance will increase with time, Figure 1,11 shows an unstable system,
@ 1.4.3.6 CASE 6: - =-=1, UNSTABLE

For this case, the roots of the characteristic equation are

and

X = e(“’nt)(c1 + c, t)

2
@ 14.37 CASE 7: ¢ -1, UNSTABLE

This case is similar t. case 4, except that the system diverges,
See figure 1,7.

_ 2
p1,2 -rwnf_mn,\/c -1
EXAMPLE

Given

O
o o= 0
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The system is undamped with a solution
X = A sin (2t + ¢)

where A and 4 are determined by substituting the boundary conditions
into the coinplete solution.

EXAMPLE
Given
X+ x+x=0

! from equation 1,73

woo=1
n

] and

1

! z =90.5

=Rt l -7 =0.87

i Tne system is underdamped with a solution

’ “0.5% Sin (0.87t + ¢)

é X, = Ae
; EXAMPLE

Given

X : _
T + x+x=20
We multiply 4 to get the equation in the form of equation 1,74,

Then

X+ 4% + 4x = 0
] and
‘ w = 2




)
¥

TSN

The system is critically damped and has a solution given by

X, = c.e + c2te—2t

we get
w_ = 2
n
and

The system is overdamped and has a solution

= & e—7.46t e

-0.54t
t =% 2

X

EXAMPLE
Given
X -2%x + 4x =0

From equation 1,74

w = 2
n

and

; = =0,5

7he solution is unstable (negative damping) and has the form

x, = Aet sin (1.7 t + ¢)

®1438 DAMPING (See figure 1.14)

The best damping ratio for a system is determined by the intended
use of the system, If a fast response is desired, and the size and num-
ber of overshoots is inconsequential, then we would use a small value of
r. If it is essential that the system not overshoot, and we are not too
concerned about response time, we could attempt to use a critically




damped (or even an overdamped) system, The value ¢ = 0.7 is often re-
ferred to as the optimum damping ratio since it gives a small overshoot
and a relative quick response. It should be noted that "optimum damping
ratio" will change as the requirements of the physical system change,

PROBLEMS: Set II, e only, page 1.86-

@ 1.4.4 ANALOGOUS SECOND ORDER LINEAR SYSTEMS
©® 1.4.41 MECHANICAL SYSTEM

The second order equation we have been working with represents the
mass~spring-damper system of fiqure 1.12 and has a differential equation
given by

e es ek %= EE) (1.86)

where

3
[

mass

(#]
]

damping coefficient
k = spring constant

and we defined

mn =V r_ﬂ (1.87)
L = ‘C (1,.83)
2vmk
and thus
20w = S:—
m

Equation 1.86 may then be rewritten,

. C - k -

X + & X + 5 X = fl(t) (1.89)
{ where
' . _ E(t)
E | £,(8) = 8L

or
222 e 0 Rz £ (k) (1.90
n n 1 *

Sk e Lo

1.44




@ 1.44.2 ELECTRICAL SYSTEM

The second order equation can also be applied to the series LRC
circuit shown in figure 1.15.

+ R - + - +,¢ -
b — AN ——T— | d
= +
E(t)
¥
a
Figre 1.15

where

L = inductance
resistance
capacitance
charge

current

Assume q(0) = G(0) = 0, then Kirchhoff's voltage law gives

E Via = O

or

Ot e T T TS A R
. )
) o’
P Q Q L]
I It [} ]

£
i - —
% . BUE), v = Ve =0
& i
o : dii A :
) LY — =] - =
L & E(t) iR - L JE " C idt 0
f Fod o]
b 1
L %5
T - Since
£ . _ dq
E ¢ T at
| ¢ ey = s
2 TS E(t) = Lg + Ry + 2 (1.91)
S 4»
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Q;a

We now define

Using these parameters, equation 1,91 can be written

o o 2 _ E(t)
q + Zcﬂnq +w g = El(t) = 5 (1.92)

@ 1.443 SERVOMECHANISMS

For control systems work, the second order equation is
I+ f & + 48 =4 o9, (1.93)
o o o i
where

I = inertia ~ S

f = friction

u = gain
vy = input
?o = output

Rearranging 1.93 we have

f . 1 o
e B abu =i, (1.94)

or

T4 2 .0+ w Sy w %6, (1.95)




Thus, we see that we can generally write any second order 4/ Fferential
equation in the form

. o 2
X+2 00 x+ w® ox = f(t) (1.96)

where each term has the same qualitative signiili-~ance, but different
physical significance,

B 1.5 LAPLACE TRANSFORMS

We have developed a technique for solving linear differential
equations with constant coefficients, with and without inputs or forcing
functions, We have admitted that our method has limitations, It is
suited for differential equations with inputs of only certain forms,
Further, the solution procedure requires that the student stay constantly
alert for special cases that require careful handling. We accepted these
"bookkeeping" chores because our solution procedures had the remarkable
property of changing or "transforming" a problem of integration into a
problem in algebra., (That is, solving a quadratic equation in the case
of second order differential equations,) This was acco gpiished by making
an assumption involving the number e, as follows:

Given

aX + bx + cx = 0 (1,97)
Assume

x = et (1.98)
Substituting

am2emt + bme™ + ce™ =0 (1.99)

and N
e™ (an® + bm + c) = 0 (1.100)

led us to assert that 1,98 would produce a solution if m were a root of
the characteristic equation

am2 + bm+c=0 (1.101)

We then introduced an operator, p = d/dt, and noted a shqrt cut (book-
keeping coincidence) to writing the characteristic equation 1.101 as

i ap2 +bp+c=0 (1.102)

N L
X Dy ey

which we then solved for p to give solution of the form

; x = c,eP1t + ¢ eP2t (1.103)
i 1 2

“» Of course, the great shortcoming of this method was that it dii not pro-
k “y vide a solution to an equation of the form
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aX + bx + cx = f(t) (1.104)

It only worked for the homogeneous equation. Still, we were able to
patch together a solution by obtaining a particular solution (using

still another technique) and adding it to the "transient" solution of

the homogeneous equation. 1t should ke appreciated tha" the method of
undetermined coefficients also provided a solution by algebraic manipula-
tion.

Suppose we were adventurous enough to inquire further. We ask,
"Does there exist a technique which would exchange (transform) the
whole differential equation, including the input, into an algebra
problem?" The answer is a qualified "Yes.," Fortunately, the "Yes"
answer applies to the types of equationswith which we have been working.

In equation 1,104, x is a function of t. To emphasize this, we
rewrite 1,104 as:

a¥X(t) + bx(t) + cx(t) = f£(t) (1.105)
Suppose we multiply each term of 1,105 by emt, giving us:

mt t

ak(t)e™ + bx(t)e™ + cx(t)e™ = f(r)e™t (1.106)
Now, a most remarkable feature begins to emerge, It so happens that
1.106 can be integrated term by term on both sides of the equation to
produce an algebraic expression in m. The algebraic expression can then
be manipulated to obtain eventually the solution of 1,106,

The preceding statements have omitted many details, but express the
method of solution we now seek to develop. Our new "fudge factor", emt,
should be distinguished from the previous technique for solving the homo-
geneous equation, so we shall replace the m by the term, -s., The reason
for the minus sign will become apparent later., If we are to integrate
the terms of 1,106, we shall need limits of integration. In most physi-
cal problems we are interested in events that take place subsequent to
a given starting time which we shall call t = 0, Since we are unsure
of the duration of significant events, we shall sum up the composite of
effects from time t = 0 to time t = « (that should cover the field). So
now equation 1,106 becomes

0 0

j/’ £(t) e"5t gt (1.107)
0

Equation 1,107 is called the Laplace transform of equation 1.105,

ax(t) e-St dt +—/f b x(i) e"St dt + c x(t) e-St at
0

There is one small problem, How do we integrate these terms? We
now focus our attention upon this problem,

1.48
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O 1.5.1 FINDING THE LAPLACE TRANSFORM OF A DIFFERENTIAL EQUATION

We now attempt to find the integrals of the terms of the differential
equation 1.107. The big unanswered question posed by equation 1.107 is
"What is x(t)2" (that is, x(t) is an unknown). Thus,

j x(t) e St gt = L{x(t)} = X(s) (1.108)
0

X(s) must, for the present, remain an unknown. (Remember that m was
carried along as an unknown until the characteristic equation evolved,
at which time we solved for m explicitly.) Since 1.108 transforms x(t)
into a function of the variable, s, we shall say

R YR

/ c x{t) e 3% at = c[ x(t) e 5% at = cx(s) (1.109)
0 Jo

and be content to carry along X(s) until such time that we can solve
for it,

Now consider the second term, b x(t). We want to find:

/ b x(t) e St gt = bj x(t) e 5t gt (1.110)
0 0

To solve 1.110 we call upon a useful tool known as integration by
parts.

Recall

b T [P
udv = uv - vdu (1.111)
a Ja
a

Applying this tool to equation 1.110 we let

T .
5 2 e R AR R L 7

-st
u==e
L ]
and
dv = x(t) dt
then

du = -3¢ dt

and

1.49




Putting these values into 1,111 and integrating fromt = 0 to t = =,

-st| ° - x(t)[ -se'St] dt
x(t)e 0 -/;
x(t)e-St]0 + ﬁ/; x(t)e-St dat

L

x(t)e"St]0 + sX(s) (1.112)

ﬁ x(t)e %t at

Now

t

x(t)e'St]o = 1lim x(t)e™®% - x(0) (1.113)

t +

and we shall assume that the term e-St "dominates" the term x(t) as

t ~» o
Thus, lim x(t)e St = 0, ani equation 1.111 becomes
/
o0 " - .}'-.
[0 x(t)e Stdt =0 - x(0) + sX(s) = sX(s) - x(0) (1.114)

Equations 1.109 and 1.114 can be abbreviated by using the letter L to
signify Laplace transformations.

L{ x(t) } = X(s)
L{ cx(t) } = cX(s) (1,115)

L{ x(t) } = sX(s) - x(0)

L{ bx(t) } =blsX(s) - x (0)] (1.116)

Equation 1.116 can be extended to higher order derivatives. Such an

extension gives »
Liak(t)} = a [s2X(s) - sx(0) - x(0)] (1.117)

Returning to equation 1.107, we note that we have found the Laplace
transforms of all the terms except the forcing function, To solve this
transform, the forcing function must be specified. We shall consider a
few typical functions and illustrate, by example, the technique for find-
ing the Laplace transform,

EXAMPLE
f(t) = A = constant
Then
L{a} =, P il [ e %t (_gat) = - A8t
-S S
Jo 0
1.50




or

L{a} = (1.118)

0|y

EXAMPLE
f(t) = t

Then

L{t} i/; re"8tg¢

To integrate by parts, we let

Substituting into 1,110

[ geS%at = 22|+ L] eTfat
Jo 0 o .

or

_ 1
S
EXAMPLE

g | = &2°

Then

2t | % 2t -st, _[ T o (2-s)tg _ 1
L{e } "/ﬂ) e (=] dt—ﬁ e dt . S—;——?'

= (1.120)

or
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EXAMPLE
i f(t) = sin at

Then

(-]

u = sin at

av = e gt

} Then

L]

du a cos at dt

~-st

v=--e

/20

L{sin at} ijo sin at e ~-dt

Substituting into 1,111

st

Integrate by parts, letting

u = cos at

i

§ av = e Stat

i and

du = ~-a sin at 4t
S L -st
. M/ S
Giving
cos at e Stat

; 0

1.52

= . -st [-+] [-+]
o sint e™St - —(sin at)(e "7) G cos at e Stat
S S
0 0
or
o sin at e Star = 0 + g cos at e Stat (1.121)

st

The expression cos at e ~ dt can also be integrated by parts, letting

-st x ”
- —lcos at) (e ) sin at e Stat

S

1
TR




or

0

= g.x.{sin t} (1.122)

o
‘/; cos at e~Stat

Substituting 1.122 into 1.121 gives

2

- _ 1l _ q - _a .
L{»in at} = 0 + 5 L{sin at} ;T ;Z L{sin at}

niw
nip

which "obviously" yields

L{sin at} = —Ti—z- (1.123)
s + a

Also note that 1,121 may be written as

L{sin at}

g L{cos at}

which yields

S

S + a

L{cos at}

The Laplace transforms of more complicated functions may be quite
tedious to derive, but the procedure is similar to that above. Fortu-
nately, it is not necessary to derive Laplace transforms each time we
use them, Extensive tables of transforms exist in most advanced mathe-
matics and control system textbooks,

We originally asserted that the Laplace transform was going to
assist in the solution of a differential equation, The technique is
best described by an example.

EXAMPLE
Given

B = AePt

with conditions x(0) = 1, x(0) = -4, Taking the Laplace transform of
the equation gives

s2x(s) -sx(0)- X(0) + 4 [sX(s) - x(0)] + 4X(s) = 2

or

(s2 + 45 + 4] X(s) + [-s + 4 - 4] = 24

1.58
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Solving for X(s),

2
X(s) = —S =25+ 4 (1.124)

(s - 2)(s + 2)°

In order to continue with our solution, it is necessary that we dis-
cuss partial fraction expansions.

PRCBLEMS: Set III, page 1.100.

@®1.52 PARTIAL FRACTIONS

The method of partial fractions enables us to separate a complicated
rational fraction into a sum of simpler fractions. Suppose we are given
a fraction of two polynomials in a variable, s. Suppose the fraction is
proper (the degree of the numerator is less than the degree of the domi-
nator). If it is not proper, we make it proper by dividing the fraction
and then consider the remainder expression. There occur several cases:

@ 1.5.2.1 CASE 1: DISTINCT LINEAR FACTORS
To each linear factor such as (as + b), occurring once in the demoni-

nator, there corresponds a single partial fraction of the form, A/(as + b),
where A is a constant to be determined.

EXAMPLE

B C
+ —T + ] {(1.125)

7Je - 4 _ A
s(s - 1)(s + 2y " s

® 1.5.22 CASE 22 REPEATED LINEAPR. FACTORS

To each linear factor, (as + b), occurring n times in the demoninator
there corresponds a set of n partial fractions.

EXAMPLE
s2 9s + 17 A B C
= = + + (1.126)
(s -(s+ 1) FD s g2

(where A, B, and C are constants to be determined)

@ 1.5.23 CASE 3: DISTINCT QUADRATIC FACTORS

To each irreducible quadratic factor, as? + bs + ¢, occurring once
in the denominator, there corresponds a single partial fraction of the
form, (As + B)/(asé + bs + c), where A and B are constants to be deter-

mined.

1.54
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EXAMPLE
2
s° + +
3 58 8 + = i ” o B; + C (1.127)
(s + 2)(s2 + 1) s” + 1

® 1.5.2.4 CASE 4: REPEATED QUADRATIC FACTORS

To each irreducible quadratic factor, as? + bs + ¢, occurring n times

. in the denominator, there corresponds a set of n partial fractions,
EXAMPLE
2
10 s t*? + §§2 - - f'l % B; + C T Dg + E ” (1.128)
* (s - 4)(s° + 4) s + 4 (s + 4)

(where A, B, C, D, and E are constants to be determined)

The "brute-force" technique for finding the constants will be
illustrated by solving 1,128, Start by finding the common denominator

on the right side of 1,128.

198’ +s+36 _ast+ 02+ (Bs +C)(s - 4)(s® +4) + (Ds + E)(s - 4)

R s - 4)(s? + ) (s - 4)(s% + 4)°
(1.129)

Then set the numerators equal to each other

A(s2 + 4)2 + (Bs + c)(s2 + 4)(s - 4) + (Ds + E) (s - 4)
(1.130)

10 8% + 8 + 36 =

and, without justifying the statement, we shall assert that 1,130 must
hold for all values of s, Now substitute enough values of s into 1.130

to find the constants.

e

2

1. Suppose s = 4, then 1.130 becomes
(10) (16) + 4 + 36 = 400A

and

A=1/2

AR TR

2. Suppose s = 2j, then 1,130 becomes

Lyt

-40 + 2§ + 36 = -4D + 23JE - 8jD - 4E

-4(D + E) + 2j (E - 4D}

-4 + 23

The real and imaginary parts must be equal to their counterparts on the
}; opposite side of the equal sign, thus

1.56
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(D+E) =1
and

E-4D =1
or

D=0
and

E=1

3. Now let s = 0, then 1.130 becomes

36 = 16A - 16 (C) - 4E

and from above
A=1/2, E=1

hence
36 = 8 - 16C - 4

and
c= =2

4, Let s = 1, then 1,130 becomes

47 25 (1/2) + (B -~ 2)(-15) - 3

94

25 - 30B + 60 - 6,
or
Th B = -1/2

Then 1.129 may be written

2

10 s° + s + 36 o 1 s + 4 1
=172 (1) - 172 ) 4

@ & dj4e” & ay2 s -1 S (8% + 4)%

let's continue with our attempt to solve the differential equation

X+ 4x + 4x = 4e2t

We have transformed the equation (and substituted initial conditions) to
get
g 4
X(g) = ~E. -28 %3 (1.124)
(s - 2)(s + 2)

1.56




We now expand by partial fractions

s2 -2s+4 _ A

B c
= + + (1.132)
(s —2)(s +2)2 S-2 §s+7 7 .52

Taking the common demoninator, and setting numerators equal

= 62 - 25 + 4 =02a(s+2)2 +B(s +2)(s -2) + Cfs - 2) (1.133)

We can now substitute different values of s into this equation and solve

for the constants. An alteinate method of solving for these constants

exists, however, and we will demonstrate this new approach., If we multi-
N ply out the right side of 1.133 we get

s2 -2s + 4 A52 + 4As + 4A + Bs2 - 4B + Cs - 2C

(A + B)sZ + (4A + C)s + (4 - 4B - 2C)

Now the coefficients of like powers of s on both sides of the equation
must be equal (that is, the coefficient of s2 on the left side equals
the coefficient of s2 on the right side, etc.) Equating gives

s  : =2 = 4A + C
s : 4 =4A - 4B - 2C

Solving, we get

A=1/4

B = 3/4
.

c=-3

Substituting into 1.132, we get
* 1 \ i 1 \2
X(s) = 1/4 |—— /+ 3/4 7| 3\sF7 (1.134)

@ 1.5.3 HEAVISIDE EXPANSION THEOREMS FOR ANY F (s}

®1531 CASE 1 DISTINCT LINEAR FACTORS

1f the denominator F(s) has a distinct linear factor, (s - a), we
1;, find the constant for that factor by multiplying F(s) by (s - a), and
3 then evaluate the remainder of F(s) at s = a.

1.5




s = a
EXAMPLE
- 7s - 4 _ A B C
F8) = e Tevs T "5 5T 577 .
_ - 78 - 4 = 4 _
A = sF(s) S G =D+ = =0y = 2
Al ‘
e 78 - 4 7 -4
] B = (s - 1)F(s) il o ) =T1'7T3T=1
3 js= I, SeEE s =1
7s - 4 -14 - 4
C = (s + 2)F(s) = = — = -3
3 |s=-2 ste -DTl, . , T3
See case 4 also,
@ 1.53.2 CASE 2: REPEATED LINEAR FACTORS e

If the denominator of F(s) has any repeated linear factors, they
must be treated in & special manner.,

F(s) = £ + B + = + + &

(s_a)n (s_a)n-l

1 Let ¢(s) = (s - a)® F(s)

Then

A $(s)

w
1]

dé (s)/d

s = a

(@]
]

1 2 2
5T d“¢ (s) /ds
) s = a

.1 d%(s)
TRT T

s = a

*Note: This formula is good for all constants except A above.
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where k =1, 2, ..., n -1
where the derivatives of §(s) are obtained by using

d (u)= vdu - udv
v Tz

ds

For example,

2

F(S) = s - 93 + 17 = 3 + B + C
s -2)° s+1) 8*¥L 7 (g.2% 8-°
A = (s 5 0) 'Fia) _s? -9s + 17 149417 _ 9
_ )
I L (-3)
B=¢(S) _32-9‘5"'17 =4"18+17=l
= S + 1 3

s =2 s = 2

= de(s) (s +1)(28 -9) - (82 95 +17) (1)
g B (s + l)2
s =2 s = 2

_(3)(-5) - (4 -18+17) _ -18 _ _,
(3)° e

See case 4 also.

©1.5.3.3 CASE 3: DISTINCT QUADRATIC FACTORS

If the denominator of F(s) contains a distinct quadratic factor
(s + a)2 + b2, we will again multiply F(s) by (s + a)? + b%, and evaluate
the remeinder of F(8), ¢(s), at s = -a + jb and use real and imaginary
parts of ¢(s) to obtain the two constants,

As + B

F(s) =
(s + a)2+ b2

Let
o(8) = [}s + a) + b2 | F(e)

and compute

¢+ jo. = ¢(s)
r . s = -a + jb

1.69
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Then

For example,

4s® + 19s + 32 _ As +B c
F(s) = ' 7 = vi v
(s + 2) [(s + 3)° + 4] (s + 3) + 4

¢r + J¢i = ¢(S) = S +7
s = =3+ j2 s = =3 + j2
-5 - j10 -1 - j2 _
s I i i L
¢, = -3 6, = 4 a=3 b=2
_ 4 _ _ -6 + 12 _
A = 2— - 2 B = -———2———— = 3

See case 4 also.

@1.5.3.4 CASE 4 REPEATED QUADRATIC FACTORS (AND ANY OTHER CASE)

Procedures similar to those used in the previous cases exist for
this case but they are too cumbersome for most applications, The follow-
ing procedures will work for any combination of linear and quadratic

factors:
2
F(s) = 10s” + szf % _ _A B +C Ds +E
s -4)(s + )% S5 - % 4 (% + )?

Put the right-hand s de of the equaticen over a commcn denominator and
then set the two numerators equal.

Z . (s 4C) (s - 4) (s> + 4) + (Ds + BE) (s - 4)

1082 + s + 36 = A(s? + 4)
(1.135)
which will be a true equation for all valiues of s,
®1535 PROCEDURES

The followinc steps mey be done in any order, and in combination
with the procednres in ecases 1 through 3.

T

b
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1. Since equation 1.135 is true for all values of s, chcosing specific
values of s, five in this case, ana substituting into >quation 1,135
will give you five eguations in five urknowns, which can be solved
simultaneously for the constants,

2. Expand the right hand side of equation 1,135 and find the coeffi-
cients of each power of s. These coefficients must be the same on

f both sides of the equation (that is, s4: B = 0; s©: 4A - 16C -4E =

i 36) .

3. Let s equal an imaginary or complex number and substitute into

. equation 1.135. The real parts on both sides of the equation
X must be equal, and so must the imaginary parts,

] Examining equation 1,135, we will use a combination of procedures., First,
4 find A by using case 1

_10(16) + 4 + 36 _ 200 _ 1
(16 + 4)°2 o0 ~ 7

A = (s - 4) F(s)

4]
]
o

If we let s = j2, the only non-zero term will be the one with D and E.
Letting s be a complex number will give us two equations for D and E,
which we can solve simultar.eously.

) 10(52)2 + 42 + 36 = (32D + E) (52 - 4)
4 + j2 = -4D - 4E -38D + j2E

Now set real and imaginary parts equal,

n
;8]

-4D -4E = -4 -8D + 2E

1
;8]

-2D -2E = =2 -8D + 2@

g
g

Adding the two equations together gives:

-10D

0

D=0

T AT TR R R T T S

Then

2E = 2

E=1

To find C, let s = 0 in equation 1,135

16A - 16C - 4E = 16(1/2) - 16C - 4(1)

36

16C = 8 -~ 4 - 36 = 32
S
4 cC = -2

16




To find B, let s =1

10+ 1 + 36 = 25A + (B +C)(-3)(5) + (D + E) (-3)
47 = 25(1/2) - 15B - 15(-2) - 3
15B = 12 1/2 + 30 - 3 - 47 = 42 1/2 - 50 = -7 1/2
B=-1/2

An alternate way to find B is to calculate the coefficient of s4 on the
right-hand side of equation 1.135, and then set it equal to the coeffi-
cient of s4 on the left hand side of the equation. Then we get

A+ B 0

B -A = -1/2

To complete our solution, we must convert (transform} back into the
time domain, The operation which converts a function X(s) back to a func-
tion of time is called the inverse Laplace transformation.

L L{x(t)}) = L1 {X(s)} = x(t) (1.136)

The inverse Laplace transformation can be solved directly

C+ g
! X(t) = =t x(s)eStas (1.137)
"I e - o

! (where C is a real constant)

i This integral, 1.137, is hardly ever used because the Laplace transform
is unique and, thercfore, generally X(3) can be recognized as the Laplace
i transform of some known x(t). In practice, tables of transform pairs
(as found in most mathematice texts) will suffice to find the inverse of
X(s) (see table II, page 1.1n6, for somes transform pairs), ®

Using a suitable transform table, the inverse of 1,134 can easily
be found to give us a solution

2t 2t =2t

x(t) = 1/4 e~ + 3/4 e °° - 3te (1.138)

T X

PROBLEMS: Set IV, A, page 1.,106.

® 1.5.4 PROPERTIES OF LAPLACE TRANSFORMS

The Laplace transform of some f(t), a fuanction of time, is defined
as

1 L{f(t)} = F(s) =J[; f(t)e Stae (1.139)

1.62
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where

s =0 + jo (a complex number)

The strength of the Laplace transform is that it converts linear
ditferential equations with constant coefficients into algebraic equa~
tions in the s-domain., All that remains to do is to take the inverse
transform of the explicit solutions to return to the time domain, Al-
though the applications at the school will consider time as the inde-
pendent variable, a linear differential equation with any independent
variable (such as distance) may be solved by Laplace transforms,

There are several important properties of the Laplace transform
which should be inc¢luded in this discussion,

In the general case it can be shown that

-1
at f£(t) n n-1 n-2 df(0) a"~t£(0)
L{—-———1 )= 5 PF(s) - s £(0) + s + eem T
at? dat at™"
(1.140)

It is obvious that for quiescent systems (that is, initial condi-
tions zero)'

a" e

~= = s"F(s) (1.141)
dt

L

This result enables us to write down transfer function by inspec-
tion,

Another significant transform is that of an indefinite integral.

In the general case

n n n- ¢
s [ s

Equation 1,140 allows us to transform Integro-differential equations such
as those arising in electrical engineering.,

For the case where all integrals of f(t) evaluated at 0+ are zero,
our transform becomes

L {[[f ElRh D) = F‘i) (1.143)
s

A third useful property of the Laplace transform arises if we con-
sider the Laplace transform of the product of some exponential and any
other function cf time,

1.63
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-
L {é—at £(t) i/f o T ST i/ f(y)e'(s talt g
0 0

(1.144)

It is apparent that this is the same form as the transform of f(t),
except tha: the transformed independent variable is (s + a) rather than
s, We conclude therefore that

Tat f(t)} = L{£(t)} = F(s + a) 1.145)

(s » s + a)

L {e

It is important to note at this point, that the transform of the
product of two functions of time is not equal to the product of the
individual transforms, In symbolic form,

L {f(t) g(t)} # F(s) G(s) (1.146)
The L{f(t) g(t)} must be solved for directly by the definition cf
the Laplace transform,

The last property we will consider is the Laplace transform of a
pure time delay. A pure time delay of the function f(t) caa be repre-
sented mathematically as

f(t - a) u(t - a) (1.147)

where a 1is the length of delay and u{t - a) is the unit step defined as

1, (¢t -a) »¢

u(t - a)
0, (t-a) -0

For such a time delay
Lif(t -a) ult - a)i =e 2 Lif(t)) (1.148)
e shall now demonstrate the usefulness of the laplace transform by
solving several example problems,

BXANPIE

Solve the given eguation for x(t),
no4 2% = ] (1.147)

when x(0) - 1,

).0d




By Laplace
L{x} = sX(x) - x(0)

L{2x} = 2X(s)

Inverse transforming gives

a
L{l} = 5
Thus
(s + 2) X(s) = é P
L B
X(s) = s(s + 2) s t s 7
Solving,
A=1/2
and
B=1-1/2=1/2
172 . 1/2
X(e) = == *s5%2

x(t) = 1/2 - 172 e™%t (1.150)
EXAMPLE
Given

X + 2x = sin t, x(0) = 5 (1,151)
solve for x(t).
Taking the transform of 1,151

sX(s) - x(0) + 2X(s) = —t—

s” + 1
and
1 5
X(s) = DT E e t 5o (1.152)

Expanding the first term on

; 1 . As + L,
b e T, e
f iw (52 + 1)(s + 2) ;2 +]

i RS s

the right side of the equation gives

C
s +

+ W)

) 64




Taking the common denominator and equating numerators gives
1l =(As +B) (s + 2) + c(s2 + 1)

Substituting values of s leads to

A= -1/5
B= 2/5
c= 1/5

and substituting back into 1,152 gives

-1/5 s 2/5
) *
s” + 1 s + 1

/5

+ 8 + 2 ]

X(s) =

5
+ 2

Inverse transforming gives our solution

x(t) = =1/5 cos t + 2/5 sin t + 5 1/5 et

EXAMPLE

Given
=3

"
-

X+ 5% + 6x = 3¢7°F, x(0) = x(0)

solve for x(t).

Taking the transform of 1,154

s2x(s) - sx(0) - %(0) + 58X(s) - 5x(0) + 6X(s) = g_g_g

or

52 + 9s + 21

X(s) = 7
(s + 3) (s™ + 58 + 6)

Factoring the denominator,

52 + 95 + 21

(s + 3)(s + 2)(s + 3)

X(s)

‘g% + 98 + 21
(s + 3)%(s + 2)

1.66

(1,153)

1.154)

(1,155)

(1.156)




<»
# -

(1.157)

A B c
F3*t tEF

(s + 3)2 8 4

Finding the common denominator of 1.157, and setting the resultant
numerator equal to the numerator of 1.156,

s2 +98 + 21 = A(s + 3)(s + 2) + B(s + 2) + C(s + 3)2

which can be solved easily for

A= -6
B = -3
c= 1

Now X(s) is given by

-6 3 7
X(s) = - +
s + 3 (s + 3)2 s + &
which can be transformed to
x(t) = -6e~3t - 3te™3t 4+ 772t (1.158)
EXAMPLE
Given

%+ 2x + 10x = 3t + 6/10

x(0) 3

x(0) = - 27/10
solve for x(t),

Transforming 1,159 and solving for X(s) gives

3 2

X(s) = 3s ; 3.gs + 0,6 + 3 _ 2 + EI I 727Cs + D
s“ (s + 2s + 10) s s° + 2s + 10
where
A=0
B=20.3
c=3
D=3

161




Thus,

X(s) = é = : (1.160)

To make our inverse transforming a bit easier, let's rewrite 1,160 as

0.3 (s + 1)
X(s) = + 3 (1.161)
&2 (s + 1)° + 32

which is readily transformable to

t

x(t) = 0.3t + 3e -~ cos 3t (1.162)

PROBLEMS: Set IV, B, page 1.106.
® 1.5.5 TRANSFER FUNCTION
Before beginning simultaneous differential equations, we shall de-
fine the transfer function of a system. Consider the following eguation
with initial conditions as shown,
ax + bx + cx = f(t) (1.163)
x(0) = x(0) =0

If we take the Laplace transform of 1,163, we get

as®X(s) + bsx(s) + cX(s) = F(s) (1.164)
or

X(s) _ 1

F(s) 2

as” + bs + ¢

Since equation 1,163 represents a system whose input 1s f(t) and whose
output is x(t), we shall define

A

X(s) output transform

e

F(s) input transform

We can then define the transfer function of the system, TF, as

=

(s

~—

TF (1.165)

ror our exa ple,

g S S (1.167)
as’ + bs 4 ¢

1.68
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Note that the denominator of the transfer function is algebraically the
same as the characteristic equation of 1.163., We have already seen, in
paragraph 1.6.1 on operator notation, that the characteristic equation
completely defines the transient solution, and that the total solution

is only altered by the effect of the particular solution due to the input
(or forcing function). Thus, from a physical standpoint, the transfer
function completely characterizes a linear system,

The transfer function has several properties which we wish to ex-
ploit. Suppose that we have two systems characterized by the differen-
tial equations

ax + bx + ex = f(t) (1.168)
and
dy + ey + gy = x(t) (1.169)

From the equations it can be seen that the first system has an input
f(t), and an output x(t). The second system has an input x(t) and an
output y(t). If we take Laplace transforms at 1.168 and 1.169 we get
(assuming all initial conditions are equai to zero)

(as?® + ks + ¢) X(s) = F(s) (1.170)

and

(ds? + es + g) Y(s) = X(s) (1.171)

Finding the transfer functions,

X(s) 1
TF, = = (1.171)
1 F(s) a52 + bs + ¢
= Y(s) = 1
TF, = XET S (1.173)

ds2 + es + g

Now, both of these systems can be represented schematically as shown in
figure 1.16.

F(s)——>=| TF1 f———X(s)

SYSTEM 1

X(8) | TF2 feimm Y(s)

SYSTEM 2

&

Figiwe 1.16
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Suppose that we now wish to find the output, y(t), of system 2 due
to the input, f(t), of system 1. Our first inspiration might tell us
that the logical thing to do is to find x(t), but this is not necessary.
We can "1ink" the two systems using the transfer functions, as shown in
figure 1.17.

F(s)—>~ TFy ,_i@ TF2 - Y(s)

F(s | TF3 b ¥ (5)

TE3=(TFIXTF2)

Figure 1.17

The solution we seek, y(t), is then given by the inverse transform
of Y(s), or

Y(s)

[TF3] F(s) (1.174)

or

Y(s)

r '| 5
[TFl] I-TFZJ F(s) (1.175)

This method of solution can pe logically extended to include any
number of systems we desire,

@ 1.6 SIMULTANEOUS LINEAR DIFFERENTIAL EQUATION

In many physical problems, the mathematical description of the sys-
tem can most conveniently be written as simultazneous differential equa-
tions with constant coefficients., The basic procedure for solving a
system of n ordinary differential equations in n dependent variables
consists in obtainiag a set of equations Irom which all but one of the
dependent variables, say x, can be eliminated. The eguation resulting
from the elimination is then solved for the variable x. Each of the
oth v dependent variables is then obtained in a similar manner.

We shall consider two procedures for colution of simultaneous
linear differential equations, using determinants,

Consider the system

dx dy L

2+ F-ax-y-e (1.177)
dx .
g r Aty =0 (1.178)

1N
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Using operator notation, they become

2(p - 2)x + (p - 1)y = et (1.179)

(p+3)x+y=20 (1.180)

@ 1.6.1 SOLUTION BY MEANS OF DETERMINANTS AND OPERATOR NOTATION

Recall that for a determinant of second order the value of the
determinant is given by

a b
= ad - c¢b (1.176)
c d

And then rewrite these equations in the following form

Py X + pyy = fl(t) (1.181)

Py X + Py = £,(t) (1.182)

where the p's denote the polynomial operators which act c¢n x and y.

OQur solution for x can be given by Cramer's rule

‘ P) P | £ (e Py l
| i X = (1.183)
1
Ip3 Py l fz(t) P,
I
and our solution for y can be expressed as
P, P, | p £, (t)
! 1 2 ! 1 1 '
1 ly = | i (1.184)
! .
Py Fa | ©3 fg)sth l
|

To solve the system given by equations 1.179 and 1.180, we write
these equation in determinant form

l2(p - 2) (e - 1 }et (p - 1)
! X = (1.185)
(p + 3) 1 ' 0 1
which is expanded to
X’ (p?2 + 1) x = -et (1.186)

i st L
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giving a solution

x(t) = c, cos t + C,y sin t - 1/2 et {(1.187)
Solving for vy,
2(p - 2) (p - 1) 2(p - 2) et
y = (1.188)
[
(p + 3) ! (p + 3) 0
which can be expanded to
2 _ t
(p” + 1)y = de (1.189)
giving a solution
y(t) = cy cos t + ¢, sin t + 2et (1.190)

We know by examining 1.187 and 1.190 that extraneous constants are pres-
ent, and to eliminate them we substitute back into equation 1.178 and
see that

(uz + 3c1 + c3) cos t + (3¢, - ¢

2 + c4) sint =0 (1,191,

1

Since 1.191 must hold for all values of t, the terms in parenthesis must
vanish, giving

cy = —(3c1 + c2)
: and
c4 = cl - 3c2

When these values are substituted in 1,190, we obtain the general solution,

@ 1.6.2 SOLUTION BY MEANS OF LAPLACE TRANSFORMS

A very effective means of handling simultaneous linear differential -
equations is to take the aplace transform of the set of equations and
reduce the problem to a set of algebraic equations which can be solved
explicitly for the dependent variable in s, This method is demonstrated
below,

Given the set of eguations

d"x a“y
] 3o+ x+ —% + 3y = f(t) (1.192)
1 dt dt2

12
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2 93; T % 3 93§.+ 2y = al(t) (1.193)
dt dt i

where x(0) = x(0) = y(0) = y(0) = 0, find x(t) and y(t). Taking the
Laplace transform of this system yields

2

1352 + 1) X (s) + (s2 + 3) ¥ (s)

F(s) (1.194)

(2s2 + 1) X (s) + (s2 + 2) Y (s)

G(s) (1.195)

From the previous section, we can solve for X(s) by rewriting these
equations in determinant form, again by Cramer's rule

B B

(38 + 1) (52

+ 3) F(s) (s™ + 3)

X(s) = (1.196)

2 42 G(s) (s% + 2)

+ 1) (s

Since we are using Laplace transforms instead of operators, however, we
can take this equation one step further. We can now solve explicitly
for X(s), giving us

F(s) (s2 + 3)
G(s) (s2 + 2)

X(s) = (1,197)
(3s% + 1) (s + 3)
282 + 1) (s2 + 2)

In a similar manner,

(352 + 1) F(s)
(252 + 1) G(s)

Y(s) = (1.198)
(32 + 1) (82 + 3)
(2s2 + 1) (s2 + 2)

13
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. ;
For the particular inputs f£(t) = t and g(t) = 1, "j
== (s? + 3)
s
: (s® + 2) 3. .2
X(s) = . _ -s” + ; ;735 + 2 (1.199)
(s - 1) s (s - 1)
Expanded as a partial fraction *
‘ 3 2
A B Cs + D E F -s~ + s8° - 3s + 2 :
X(s) = = ey + + = (1.200)
# ° Eaey =3l EFL s(s* - 1)
| solving for A, B, etc., we have !
1
: - =2 3 1/2 - s 7/4 1/4 .
X(s) — + g-!- > i | (1.201)
s s” + 1

which yields a solution

t

x(t) = =2t + 3 - 7/4e”% - 1/4e* + 1/2 sin t - cos * (1.202)

A similar approach will obtain the solution for y(t).

In the case of three simultaneous differential equations, the appli-
caticn of Laplace will yield the proper solutions.

- F
Pl(s) X(s) + Pz(s) Y(s) + P3(s) Z(s) = Fl(s) (1.207%)
Ql(S) X(s) + Qz(S) Y(s) + Q3(S) Z(s) = Fz(s) (1.,204)
Rl(S) X{(s) + Rz(s) Y(s) + R3(s) Z(s) = F3(s) (1.205)
where
‘ Fy P ty
’
Fy 9, Q3
‘ F3 R B .
f o) = (1.206)
¥ p p p
1 1 2 3
Q, 0, 0,y
Ry 5 R3

Y(s) and Z(s) will have similar forms,
PROBLEMS: Set V, page 1.119,

114




Table II

LAPLACE TRANSFORMS

7(s)

f(t)

10.

11.

12.

j; e " £(t)dt

s" F(s) - sn—l £(0+) - sn—2 £1(0+)

B by = f(n-l) (0+)

@ [

n=1, 2, ...)

(n = 1’ 2’ oo.)
(s + a)

1
(s + a)(s +b)

a$b

8
(s + a)(s + b)

as$b

1
(s + a)(s + b)(s + ¢)

£(t)

f(n) (t)

1 (e‘at - e‘bt)

b- a

< 1 = (ae™®" - pe Pt)

b -c)e® - (a-c)e P+ (a-b)et
(@a-b)(b - c)(a-c)

sin at

1.7%




e ——

1.76

13.

l4.

15.

16.

17.

18.

19.

20.

21.

22.

(s+a)2+h

@Z-Fa )

2as

(s" + a")

(s + a”)

(%]
~N

e By
L 0hahs
(52 + z\z)(s2 +b%)

(s + a)2 + bz

---s-+a

2

Table II (Concluded)

O
cos at
1} - cos at
at - sin at
sin at - at cos at
t san at
sin at + at cos at
t cos at
(u2 ¥ b2) cos. at ~ cos bt
e-at sin bt
a-at cos bt




@ L1 PROBLEM SET |

1. Solve for y .

v [/
a. 4 . x' 4+ 4y + sin 6x

b. ~'%' = e + sinu X

e. (x =~ 1)2 ydx 4+ x2 (y+1)dy = 0

2., Test for exactness and solve if exact.
2 2
a. (' - x)dx + (x" -y)dy = 0
b. (2x3 +3y)dx + (3x+y=~1)}dy = 0
4
c. (2xy4 e’ + 2)’.y3 + y)dx + (x2y°e'V - ‘:2y2 - Ix)dy = U
4
d. HMultiply c. by 1/y .

3. Solve for 4 using opevator nutation,

a. Sy' + €6y = 0

b. ylH = Syu - 24y| - 0
4 c. y" + 12y' + 36y = 0
d. y'v + 25)1" = 0

‘

E e. y' 4+ 4y' + 13y = 0
;

j

n




1.18

dy
dx

@ 1.8 SOLUTION TO PROBLEM SET |

{
= X'+ 4x + sin 6x

By direct integration

By

fdy = f(xa + 4x + sin 6x)dx + C

g o Be oy gl = SBEER

5 3 + C

~-X
c + sin w x

direct integration

-J;y' = J}e-x + sin w x)dx <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>